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LElTER TO THE EDITOR 

A new approximate stationary probability distribution for 
processes driven by Ornstein-Uhlenbeck noise 

J tuczka and J Sladkowski 
Department of Theoretical Physics, Silesian University, 40-007 Katowice, Poland 

Received 26 May 1988 

Abstract. A novel approximate probability distribution for a class of non-linear processes 
driven by multiplicative linear Ornstein-Uhlenbeck noise is presented. A comparison is 
made with other approximate distributions reported in the literature. 

In a recent paper [ l]  one of the authors derived an approximate evolution equation 
for a one-dimensional probability distribution p ( x ,  t )  of the stochastic process x, 
modelled by the equation 

X r  = f ( x , )  + A g ( x r ) t ( t )  x E (XI Y x2) (1) 

M t ) )  = 0 

where [ ( t )  is the Ornstein-Uhlenbeck noise [2] 

( t ( t ) t ( s ) )  = D / T  exp(-ll.rIt -4). 
The positive parameters D and T are the intensity and correlation time of t(t),  
respectively. The parameter A is a 'coupling constant'. 

The evolution equation for p ( x ,  t )  is not of Fokker-Planck type but has the form [ 11 

where 

n(x, t )  = jof ds  e-"l'F(x, s) 
7 

h ( x ,  t )  =Ejof ds j: du e""[F'(x, s ) F ( x ,  u ) - F ( x ,  s )F' (x ,  U)] 
7 

(F' (x ,  t )  denotes the derivative of F(x ,  t )  with respect to x )  and the function F(x ,  t )  
is a solution of the equation 

F(x ,  0) = d x ) .  
aFb, 1) -- - f ( x ) F ( x ,  I) - f ( x )  ax t )  

at 

The lower limit of integration xo in ( 2 )  is either x l  or x2 (cf equation (1)) and is 
determined by the fact that in some limiting cases equation (2) should be reduced to 

0305-4470/88/241169 + 05$02.50 @ 1988 IOP Publishing Ltd L1169 



L1170 Letter to the Editor 

an equation of Fokker-Planck type [ 13. Equation (2) was derived under the assumption 
that A is 'small'. 

If the limits 

lim R(x, t )  = R(x) lim A(x, t )  = A ( x )  (3) 
1 - 0 2  1-m 

exist then the steady-state solution p s ( x )  of equation (2) has the form 

where N is the normalisation constant. 
Let us consider a special case of equation ( 1 )  with 

f (x)  = ax - bXy" g(x)  = cx x E [O, CO) ( 5 )  

where y, a and b are positive constants, and c is an arbitrary constant. Applications 
of equation ( 1 )  with (5) are presented in [3-111 and references therein. 

For the model (5) functions R(x) and A(x) in (3) have the form [ l ]  

A(x) = -c2D YbT x y + l  

1 + ya7 a ( l +  yar) 

The stationary probability distribution (4) becomes 
- 1  + a /  Dc2 (AX2Y - BxY + 1)-1-a/2yDc2 

P A X )  = Nx 

x exp{ +( YDC ') Y T  
tan-'[ (7) ' I 2 (  bxY - a ) ] }  

where 

2 ybr B=- yrb 
A =  

a ( l +  yar) 1 +  yar' 

In equation (6) we have put A = 1 since A occurs only in the combination A2D (then 
small A is equivalent to small D). In figure 1 we present representative shapes of p,(x). 

The function in the denominator of (6) is positive for all finite values of the 
correlation time r. So, ps(x) is certainly definite on the whole phase space [0, CO) of 
the system ( 5 ) .  The form of p,(x) is rather non-typical. The normalisation of ps(x) is 
guaranteed by this denominator. Usually, the normalisation of the stationary distribu- 
tion is guaranteed by a factor which is an exponential function of a polynomial in x 
[4,7,9, 101 and this exponential function tends to zero as x tends to infinity. The 
exponential function in (6) does not tend to zero as x tends to infinity. 

Now, we can compare our solution (6) with other solutions reported. The small- 
noise theories give (cf equations (2.36) and (2.37) in [4] and (2.17) and (2.15) in [ 6 ] )  

- I +  l / r D y 2 c 2  

1+ yar (7) 

The function P,,(x) is definite only on the interval [0, x,], where x, is determined by 
the equation 

ybm: = 1 + yar. 
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The conventional small-correlation-time theory [4,5] yields (cf equation (2.23) in [4]) 

{ l - T [ i + & - b  y + ~  x ” + y ~ ~ ~ ] } e x p ( - q )  b2 ( D”c) 2Dc YDC 
p ( ) = ~ ~ ~ - l + a / D c ~  

2s x 

and the Fox small-correlation-time theory [8,10] leads to 

S s ( x )  = N3~-’+‘’DC2 . (9) 

Figure 1. Stationary distributions given by equation 
(6) for: ( a )  a = b = c = 2, y = 1, T = 0.2 and various 
D;  ( 6 )  a = b = c = 2 ,  y =  1, T = 1 and various D;  (c)  
a = b = c = 1, y = 2, D = 1.5 and various T. Qualita- 
tively, the same shapes as in (a)  are obtained in the 
white-noise case ( T = 0). In ( b )  and (c) new features 
occur, which are absent in the white-noise case. 
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Here, N, ( i  = 1 ,  2, 3)  are the normalisation constants. We do not present the stationary 
distribution which can be obtained from the Altares and Nicolis theory [9] because 
their theory is local in space around one steady state. Their theory gives constructive 
results concerning the most probable value x, of the process x,. From equations 
(6)-(9) we can obtain the most probable values x, of the process which are determined 
by the extrema of the stationary distributions. One can check that each theory gives 
different values of x,. 

The distribution (7) cannot be acceptable for two reasons. It is not definite on the 
whole phase space [ O , c o )  and for some values of the noise parameters it leads to 
predictions that do not agree with either experiments or other theories (see, e.g., figure 
6 in [6]). The distribution (8) cannot be acceptable from a fundamental point of view. 
It is not positive definite on the whole phase space [O,CO). It becomes negative for 
sufficiently large x. Only the distribution (9) is well behaved. It is defined and positive 
definite on the whole phase space. 

Let us note the following fact. If we apply the exponentiation procedure (i.e. the 
transformation of the first terms of a Taylor expansion into an exponential, see section 
IIIB of [4]) to the distribution (8) then (cf equation (3.12) in [4]) 

F*,(x) = fi2x-*+a'/DcZ 

The first-order T expansion of the last exponential function in (10) yields P3s(x ) ,  
equation (9). Thus, from (8) we can obtain (9) by use of a somewhat artificial procedure. 

In figure 2 we compare our result (6) with the distribution (9). It is seen that both 
our approximation and that of Fox predict qualitatively the same main features of 
model ( 5 ) .  There is a good quantitative agreement between (6) and (9) for small T. 
For some values of the noise parameters, a quantitative agreement of the simulation 
results [4] with (9) is better than with (6), but this should be expected since the accuracy 
of each theory considered is limited by its assumptions (small intensity or/and small 
correlation time of the noise). 

Figure 2. The comparison of distributions p , ( x )  given by equation (6) (full curves) and 
p , , ( x )  given by (U) (broken curves) for a = 6 = c = 1, y = 2, y = f and various D. 
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